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1.  INTRODUCTION 
 

 Quantitative Structure Activity Relationships (QSARs) are mathematical models that are 

used to predict measures of toxicity from physical characteristics of the structure of chemicals 

(known as molecular descriptors).  Acute toxicities (such as the concentration which causes half 

of fish to die) are one example of toxicity measures which may be predicted from QSARs.  

Simple QSAR models calculate the toxicity of chemicals using a simple linear function of 

molecular descriptors: 

cbxaxToxicity ++= 21  

where x1 and x2 are the independent descriptor variables and a, b, and c are fitted parameters.  

The molecular weight and the octanol-water partition coefficient are examples of molecular 

descriptors. 

 QSAR toxicity predictions may be used to screen untested compounds in order to 

establish priorities for expensive and time-consuming traditional bioassays designed to establish 

toxicity levels.  When conditions do not permit traditional bioassays, QSARs are an alternative to 

bioassays for estimating toxicity.  In addition QSAR models are useful for estimating toxicities 

needed for green process design algorithms such as the Waste Reduction Algorithm 

(http://www.epa.gov/ord/NRMRL/std/sab/war/sim_war.htm). 

 The Toxicity Estimation Software Tool (T.E.S.T.) has been developed to allow users to 

easily estimate toxicity using a variety of QSAR methodologies.  T.E.S.T allows a user to 

estimate toxicity without requiring any external programs.  Users can input a chemical to be 

evaluated by drawing it in an included chemical sketcher window, entering a structure text file, 

or importing it from an included database of structures.  Once a chemical has been entered, its 

toxicity can be estimated using one of several advanced QSAR methodologies.  The program 
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does not require molecular descriptors from external software packages (the required descriptors 

are calculated within T.E.S.T.). 

 

1.1. Toxicity Endpoints 

T.E.S.T allows you to estimate the value for several toxicity end points: 

• 96 hour fathead minnow LC50 (concentration of the test chemical in water in mg/L that 
causes 50% of fathead minnow to die after 96 hours) 

• 48 hour Tetrahymena pyriformis IGC50 (concentration of the test chemical in water in 

mg/L that causes 50% growth inhibition to Tetrahymena pyriformis after 40 hours) 

• oral rat LD50 (amount of chemical in mg/kg body weight that causes 50% of rats to die 
after oral ingestion) 

 

 

1.2. QSAR Methodologies 

 

T.E.S.T allows you to estimate toxicity values using several different advanced Quantitative 

Structure Activity Relationship (QSAR) methodologies (Martin et al. 2008): 

 

• Hierarchical method: The toxicity for a given query compound is estimated using the 
weighted average of the predictions from several different models.  The different models 

are obtained by using Ward’s method to divide the training set into a series of structurally 

similar clusters.  A genetic algorithm based technique is used to generate models for each 

cluster.  The models are generated prior to runtime. 

• FDA method: The prediction for each test chemical is made using a new model that is fit 
to the chemicals that are most similar to the test compound.  Each model is generated at 

runtime. 

• Single model method: Predictions are made using a multilinear regression model that is 
fit to the training set (using molecular descriptors as independent variables) using a 

genetic algorithm based approach.   The regression model is generated prior to runtime. 

• Group contribution method: Predictions are made using a multilinear regression model 
is fit to the training set (using molecular fragment counts as independent variables).  The 

regression model is generated prior to runtime. 

• Nearest neighbor method: The predicted toxicity is estimated by taking an average of 
the 3 chemicals in the training set that are most similar to the test chemical.  

 

 T.E.S.T provides multiple prediction methodologies so that one can have greater 

confidence in the predicted toxicities (assuming the predicted toxicities are fairly similar from 

different methods).  In addition some researchers may have more confidence in particular QSAR 

approaches based on personal experience.  The QSAR methodologies above are described in 

more detail in the Theory section. 



 5 

The different QSAR methods have different advantages and disadvantages: 

 

Method Advantages Disadvantages 

Hierarchical • Can produce more reliable 
predictions since predictions 

are made from multiple models 

• Was shown to achieve the best 
prediction results during 

external validation 

• Cannot provide external estimates 
of toxicity for compounds in the 

training set 

 

Single model • Single transparent model can 
be easily viewed/exported 

• The model does not need to 
rely on clustering the 

chemicals correctly 

 

• Since the model is fit to the entire 
dataset it may  incorrectly predict 

the trends in toxicity for certain 

chemical classes 

• Cannot provide external estimates 
of toxicity for compounds in the 

training set 

Group 

contribution 
• Single transparent model can 
be easily viewed/exported 

• Estimates of toxicity can be 
made without using a computer 

program 

 

• The model doesn’t correct for the 
interactions of adjacent fragments  

• Since the model is fit to the entire 
dataset it may  incorrectly predict 

the trends in toxicity for certain 

chemical classes 

• Cannot provide external estimates 
of toxicity for compounds in the 

training set 

 

FDA • Can generate a new model 
based the closest analogs to the 

test compound 

• Always provides an external 
prediction of toxicity 

 

• Predictions sometimes take longer 
since it has to generate a new 

model each time 

 

Nearest neighbor • Provides a quick estimate of 
toxicity 

• Allows one to determine 
structural analogs for a given 

test compound 

• Always provide an external 
prediction of toxicity 

• It does not use a QSAR model to 
correlate the differences between 

the test compound and the nearest 

neighbors 

• Was shown to achieve the worst 
prediction results during external 

validation 
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2.  THEORY 
 

2.1 Molecular Descriptors 

 

Descriptors 

 Molecular descriptors are physical characteristics of the structure of chemicals such as 

the molecular weight or the number of benzene rings.  The overall pool of descriptors in the 

software contains 790 2-dimensional descriptors.  The descriptors include the following classes 

of descriptors: E-state values and E-state counts, constitutional descriptors, topological 

descriptors, walk and path counts, connectivity, information content, 2d autocorrelation, Burden 

eigenvalue, molecular property (such as the octanol-water partition coefficient), Kappa, 

hydrogen bond acceptor/donor counts, molecular distance edge, and molecular fragment counts.  

The complete list of descriptors and their literatures sources are described in the Molecular 

Descriptors Guide.   

 The descriptors were calculated using computer code written in Java.  The basis of the 

molecular calculations was the Chemistry Development Kit (Steinbeck et al. 2003).  The 

Chemistry Development Kit (CDK) is a Java library for structural chemo- and bioinformatics 

which is available at the following link:  http://sourceforge.net/projects/cdk.  The descriptor 

values were validated using MDL QSAR (Elsevier_MDL 2006), Dragon (Talete 2006), and 

Molconn-z (Edusoft-LC 2006).  The descriptor values were generally in good agreement (aside 

from small differences in the descriptor definitions for descriptors such as the number of 

hydrogen bond acceptors).   
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2.2. QSAR Methodologies 

2.2.1.  Hierarchical Clustering 

 The hierarchical clustering method utilizes a variation of Ward’s Method (Romesburg 

1984) to produce a series of clusters from the training set.  Clusters are subsets of chemicals from 

the overall set which possess similar properties.  An example of a hierarchical clustering for a 

hypothetical training set with five chemicals is as follows: 

 

For a training set of n chemicals, initially there will be n clusters (each cluster contains one 

chemical).  The overall variance in the system at a given step l is defined to be the sum of the 

variances of the individual clusters: 

( ) ( )∑
=

≡
m

k

lkvlV
1

,      (1) 

where ( )lkv ,  is the variance (in terms of the molecular descriptors) for cluster k at step l: 
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where kn is the number of chemicals in the kth cluster, d is the number of descriptors in the 

overall descriptor pool, ijx is the normalized descriptor j for chemical i, and jC  is the centroid or 

average value for descriptor  j for cluster k: 

∑
=

=
kn

i

ij

k

j x
n

C
1

1
      (3) 

Each step of the method adds two of the clusters together into one cluster so that the increase in 

variance over all clusters in the system is minimized: 

),(),()1,()()1()1(min 21 lkvlkvlkvlVlVlV −−+′=−+≡+∆   (4) 

where clusters 1k  and 2k  join together at step l  to make cluster k ′  at step 1+l .  The process of 

combining clusters continues until all of the chemicals are lumped into a single cluster.   

 After the clustering is complete, each cluster is analyzed to determine if an acceptable 

QSAR can be developed.  Each cluster undergoes evaluation using a genetic algorithm technique 

to determine an optimal descriptor set for characterizing the toxicity values of the chemicals 

within that cluster.  The maximum number of descriptors allowed for a given cluster will be 

5/kn  since the recommended ratio of compounds to variables should be at least 5 (Eriksson et 

al. 2003; Topliss and Edwards 1979) for reasonably small probability for chance correlations.  

The genetic algorithm used in this study was taken from the Weka statistical package, version 

3.5.1 (The_University_of_Waikato 2007; Witten 2005). 

 The genetic algorithm is used to maximize the adjusted 5 fold leave many out cross 

validation coefficient ( 2

,LMOadjq ): 
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where iŷ  and iyexp,  are the predicted and experimental toxicity values for chemical i,  expy is the 

average experimental toxicity for the chemicals in the cluster, and p is the number of parameters 

in the model.  The predicted toxicity values are calculated by dividing the dataset into five folds 

(a fold is a subset of the training set).  The toxicities of the chemicals in each fold ( iŷ ) are 

predicted using a multiple linear regression model fit to the chemicals in the other folds.  The 

five fold q
2
 was used instead of the traditional q

2
 LOO (leave one out) inside the genetic 

algorithm because it yields a significant degree of computational savings for large cluster sizes.  

The 1−− pnk  term penalizes models that include extra parameters that do not significantly 

increase the predictive power of the model (by decreasing the value of 2

,LMOadjq ). 

 Once the iteration for the optimum model has been completed, the q
2
 LOO value for the 

model is calculated.  If the q
2
 LOO is greater than or equal to 0.5, the model is considered to be 

good (see pg 67 of (Eriksson et al. 2001)).  If the q
2
 LOO is less than 0.5, the model from the 

cluster is not used to make predictions for test compounds. 

 The predicted toxicity ( ŷ ) for a test chemical is given by the weighted average for all the 

valid predictions(Wikipedia 2008): 
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where jŷ  and wj are prediction and weight for the jth model and nvc is the number of valid 

cluster model predictions.  If the mean toxicity is given by the maximum likelihood estimator of 

the mean of the probability distributions, the weight values are given by (Wikipedia 2008) 

2

1

j

j
se

w =       (7) 

where sej is the standard error for the jth prediction given by 

( )00

2
1 hse jj += σ       (8) 
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2
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where nj is the number of chemicals in cluster model j and pj is the number of model parameters 

for model j.  h00, the leverage for the test chemical, is given by 
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1

00 XXXXh TT

o

−
=       (10) 

where X0 is the vector of model descriptor values for the test compound.   

 The square of the standard deviation for the prediction from multiple models (
2

µσ ) can 

be approximated as 
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 The uncertainty ( û ) in the overall prediction for the test chemical is given by  



 11 

 ∑
=

−−− ==
nvc

j j

nvcnvc
se

ttu
1

21,2/1,2/1

1
/1ˆ αµα σ    (12) 

where t is the t-statistic, α  = 0.1 (90% confidence interval), and sej is the standard error for the 

jth prediction.  The prediction interval is obtained by adding and subtracting the uncertainty from 

the predicted toxicity: 

uyToxicityuy ˆˆˆ +≤≤−     (13) 

 

The prediction interval indicates that one is 90% confident that the actual toxicity is between 

uy ˆˆ −  and uy ˆˆ + .  

 The prediction uncertainty for a given cluster model is given by (Montgomery 1982a) 

( )00

2

1 /2,-1 1 htu pnj j
+= −− σα      (14)  

The uncertainty is a function of the quality of the regression model (from the 2σ  parameter) and 

the distance (in the descriptor space of the model) between the test chemical and the chemicals in 

the cluster used to build the model (from the h00 parameter).   

 Before any cluster model can be used to make a prediction for a test chemical, it must be 

determined whether the test chemical falls within the domain of applicability for the model.  The 

applicability domain is defined using several different constraints.    The first constraint, the 

model ellipsoid constraint, checks if the test chemical is within the multidimensional ellipsoid 

defined by the ranges of descriptor values for the chemicals in the cluster (for the descriptors 

appearing the cluster model).  The model ellipsoid constraint is satisfied if the leverage of the 

test compound (h00) is less than the maximum leverage value for all the compounds used in the 

model (Montgomery 1982b).  The second constraint, the Rmax constraint, checks if the distance 

from the test chemical to the centroid of the cluster is less than the maximum distance for any 
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chemical in the cluster to the cluster centroid.  The distance is defined in terms of the entire pool 

of descriptors (instead of just the descriptors appearing in the model): 

( )∑
=

−=
d

j

jiji Cxdistance
1

2
    (15) 

where distancei is the distance of chemical i to the centroid of the cluster. 

 The last constraint, the fragment constraint, is that the compounds in the cluster have to 

have at least one example of each of the fragments contained in the test chemical.  For example 

if one was trying to make a prediction for ethanol, the cluster must contain at least one 

compound with a methyl fragment (-CH3 [aliphatic attach]), one compound with a methylene 

fragment (-CH2 [aliphatic attach]), and one compound with a hydroxyl fragment (-OH [aliphatic 

attach]).  This constraint was added to avoid situations where a chemical might have a similar 

backbone structure to the chemicals in a given cluster but has a different functional group 

attached.  For example if a given cluster contained only short-chained aliphatic amines one 

wouldn’t want to use it to predict the toxicity of ethanol.  If a chemical contains a fragment that 

is not present in the training set, the toxicity cannot be predicted.  The fragment constraint can be 

removed by checking the Relax fragment constraint checkbox. 

 In the current version of the software, the predictions are made using the closest cluster 

from each step in the hierarchical clustering (in terms of the distance of the chemical to the 

centroid of the cluster defined above).  The rationale behind this approach is that one would like 

to follow the hierarchical clustering process, selecting the best model from each step.  In order 

for the prediction from the model to be used it must be statistically valid and meet the constraints 

defined above.  If the closest cluster for a given step does not have a statistically valid model (or 

violates any of the constraints), no prediction is used from that step.  If the closest cluster for a 
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given step in the clustering process is the same as the closest cluster from a previous step it is not 

used again in the prediction of toxicity. 

 

2.2.2.  FDA Method 

 The FDA (Food and Drug Administration) method is  based on the work of Contrera and 

coworkers (Contrera et al. 2003).  In this method, predictions for each test chemical are made 

using a unique cluster (constructed at runtime) which contains structurally similar chemicals 

selected from the overall training set.  This is in contrast to the Hierarchical method, where the 

predictions are made using one or more clusters that were constructed a priori using Ward’s 

method.   

 Contrera and coworkers constructed the training cluster by selecting 15-20 chemicals 

which had at least a cosine similarity coefficient of 75% with the test chemical.  The cosine 

similarity coefficient, kiSC , , is given by 

∑∑

∑
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1

2

#

1

,    (16) 

 

where xij is the value of the jth normalized descriptor for chemical i (normalized with respect to 

all the chemicals in the original training set) and xkj is the value of the jth descriptor for chemical 

k.  A multiple linear regression model is then built for the new cluster using a genetic algorithm 

and the toxicity is predicted.  The advantage of this method is that the training cluster is tailored 

to fit the test chemical.  In addition the test chemical is never present in the cluster model, which 

allows one to make external predictions for training set chemicals.  The disadvantage of this 
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method is that a new model has to be generated at runtime (which takes somewhat longer than 

computing the toxicity from preexisting models).   

 In this version of the software, clusters are constructed using the thirty most similar 

chemicals from the training set in terms of the cosine similarity coefficient.  However, a 

minimum similarity coefficient of 75% is not required for membership in the training cluster.  

Previously it was determined that this constraint did not increase the predictive performance of 

the methodology (Martin et al. 2008).  For a prediction to be valid, the cluster must not violate 

the model ellipsoid and fragment constraints described above.  In addition, the predicted toxicity 

value must be within the range of experimental toxicity values for the chemicals used to build the 

model.  This additional constraint was added to avoid potentially erroneous predictions.  Again 

for a cluster to have a valid predictive model, the LOO q
2
 must be at least 0.5.  If the model for 

the cluster is invalid or the prediction violates one of the constraints, the cluster size is increased 

incrementally (up to a maximum of 75 chemicals) until a valid prediction can be made. If a 

prediction cannot be made using a cluster with 75 chemicals, no prediction is made. 

 

2.2.3.  Single model  

 In the single model approach, a single multiple linear regression model is fit to the entire 

training set.  The model is generated using techniques and constraints similar to those for the 

hierarchical method (except that the training cluster contains the entire training set).  The 

advantage of this approach is that a simple transparent model can be developed which does not 

rely on clustering the chemicals correctly.  The disadvantage of this approach is that sometimes 

an overall model cannot correctly correlate the toxicity for every chemical class (Benigni and 

Richard 1996).  For example the single model might be able to correctly describe the trend of 
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linearly increasing toxicity for a series of normal alcohols (i.e. 1-propanol, 1-butanol,1-pentanol, 

…) but it may incorrectly describe the trend for a series of normal acids (i.e. propanoic acid, 

butanoic acid, pentanoic acid, …) which does not increase linearly. 

 

2.2.4.  Group contribution 

 The group contribution approach is based on the group contribution approach of Martin 

and Young (Martin and Young 2001).  Fragment counts (such as the number of methyl and 

hydroxyl groups in a compound) are used to fit a multiple linear regression model to the entire 

data set.  A genetic algorithm approach is not used to reduce the number of parameters in the 

model since the approach tries to characterize the contribution from all the fragments appearing 

in the training set.  The only constraint on the fragments appearing in the final model is that there 

must be at least three molecules in the training set that contain each fragment.  If a fragment 

appears less than three times in the training set, it is deleted from the list of fragments and all the 

chemicals containing this fragment are removed from the training set. After the multiple linear 

regression is performed, the model is checked for outliers.  If any outliers are detected, they are 

removed and the regression is performed again.  The process is repeated until no more outliers 

are found.  Similar to the hierarchical methodology, predictions are made using the model ellipse 

and fragment constraints.   

 The advantage of this approach is a single transparent model can be developed whose 

descriptors can be determined from visual inspection of the molecular structure of the test 

compound.  The disadvantage of this approach is that it assumes that the contribution of each 

fragment does not depend on the presence of nearby fragments in the molecule.   
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2.2.5.  Nearest neighbor 

 In the nearest neighbor approach, the predicted toxicity is simply the average of the 

toxicities of the three most similar chemicals (structural analogs) in the training set.  In order to 

make a prediction, each of the structural analogs must exceed a certain minimum cosine 

similarity coefficient (SCmin). SCmin was set at 0.5 so that the prediction coverage was similar to 

the other QSAR methods (Martin et al. 2008).  The nearest neighbor method provides a quick 

external estimate of toxicity (the test chemical is never present in the selected set of analogs).  

The disadvantage of the nearest neighbor method is that the structural differences between the 

test chemical and the structural analogs are not accounted for. 
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3.  EXPERIMENTAL TRAINING SETS 

3.1. 96 hour fathead minnow LC50 data set 

 The fathead minnow LC50 endpoint represents the concentration in water which kills half 

of fathead minnow in 4 days (96 hours).  The training set for this endpoint was obtained by 

downloading the ECOTOX aquatic toxicity database at the following link: 

http://cfpub.epa.gov/ecotox/ 

The database was then filtered using the following criteria: 

• The ECOTOX “Media Type” field = “FW” (fresh water) 
• The ECOTOX “Test Location” field = “Lab” (laboratory) 
• The ECOTOX “Conc 1 Op (ug/L)” field cannot be  <, >, or ~ (i.e. use only discrete LC50 
values) 

• The ECOTOX “Effect” field = “Mor” (mortality) 
• The ECOTOX “Effect Measurement” field = “MORT” (mortality) 
• The ECOTOX “Exposure Duration” field = “4” (4 days or 96 hours) 
• Compounds can only contain the following element symbols: C, H, O, N, F, Cl, Br, I, S, 
P, Si, As, Hg, or Sn 

• Compounds must represent a single pure component (i.e. salts, undefined isomeric 
mixtures, polymers, or mixtures were removed) 

 

The LC50 values were taken from the “Conc 1 (ug/L)” field in ECOTOX. 

 

For chemicals with multiple LC50 values, the median value was used. 

 

The final training set contained 818 chemicals.  For use in QSAR modeling, the experimental 

values in µg/L were converted to –Log (LC50 mol/L). 
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3.2. 40 hour Tetrahymena pyriformis IGC50 data set 

 The Tetrahymena pyriformis IGC50 endpoint represents the 50% growth inhibitory 

concentration of the T. pyriformis organism (a protozoan ciliate) after 40 hours.  The IGC50 

training set was obtained from Zhu and coworkers (Zhu et al. 2008).  Zhu and coworkers 

developed a training set containing 644 chemicals and two different prediction sets (one 

containing 339 chemicals and one containing 110 chemicals).  Zhu and coworkers  compiled the 

IGC50 values from several publications of the Schultz group (Schultz and Netzeva 2004; Netzeva 

and Schultz 2005; Schultz et al. ; Schultz et al. 2001; Aptula et al. 2005; Schultz et al. 2007).  To 

develop models for the T.E.S.T. software, all 1093 (644+339+110) chemicals compiled by Zhu 

and coworkers were placed in the training set.  This was done to maximize the predictive ability 

of the software (by using all available data).  External validation testing was performed using the 

training and prediction sets developed by Zhu and coworkers in order to develop a conservative 

estimate of the predictive ability of the different QSAR approaches.  The predictive ability of the 

models in the T.E.S.T software should be slightly better than the validation testing would 

indicate because more chemicals are used to build the models.  The modeled endpoint was the 

)/log( 50 LmmolIGC− .   
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3.3. Oral rat LD50 data set 

 The oral rat LD50 endpoint represents the amount of the chemical (mass of the chemical 

per body weight of the rat) which when orally ingested kills half of rats.  The training set for this 

endpoint was obtained by downloading records from the ChemIDplus database at the following 

link: http://chem.sis.nlm.nih.gov/chemidplus/ 

13548 records were obtained by using the following search criteria: 

• “Test” = LD50 
• “Species” = rat 
• “Route” = oral 

 

The list of chemicals was filtered using the following criteria: 

• Only chemicals with discrete LD50 values were used (i.e. chemicals with LD50 values 
with “>” or “<” were removed) 

• Compounds can only contain the following element symbols: C, H, O, N, F, Cl, Br, I, S, 
P, Si, or As 

• Compounds must represent a single pure component (i.e. salts, undefined isomeric 
mixtures, polymers, or mixtures were removed) 

 

The final training set contained 7398 chemicals.  The modeled endpoint was the –Log (LD50 

mol/kg). 
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4. VALIDATION OF THE QSAR METHODOLOGIES 

4.1 96 Hour Fathead minnow lethal concentration (LC50) 

4.1.1 Statistical External Validation 

 The predictive ability of each of the QSAR methodologies for the fathead minnow LC50 

data set (818 chemicals) was evaluated using 5 fold statistical external validation (Gramatica and 

Pilutti 2004).  This approach was applied by Kaiser and Niculescu (Kaiser and Niculescu 1999) 

to assess the predictive ability of their group contribution approach to model a slightly larger 

(865 chemicals) LC50 dataset.  Other researchers have modeled smaller LC50 datasets (Eldred et 

al. 1999; He and Jurs 2005; Papa et al. 2005).  Kaiser and Niculescu considered this validation 

approach to be a “worst case scenario” or in other words a conservative estimate of predictive 

ability.  Statistical external validation is considered to be a more realistic estimate of predictive 

ability than internal validation approaches (Gramatica and Pilutti 2004).  In 5 fold validation, the 

dataset is randomly divided into five folds.  The toxicity for the chemicals in each fold (1/5 of 

the dataset) are predicted from models fit to the remaining 4/5 of the dataset.  It should be noted 

that the final models included with the software were constructed with all 818 chemicals in the 

training set.  The toxicity of each chemical is predicted once (provided that the constraints can 

be met for at least one model).    During the external validation process, information flow from 

one fold to another is prohibited.  For example in the single model method, a new model is fit to 

each training set via the genetic algorithm (instead of just refitting the coefficients of a model 

with a fixed set of parameters).  The prediction accuracy will be evaluated in terms of R
2
abs,  

RMSE (root mean square error), and MAE (mean absolute error).  R
2
abs is given by: 
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where predyexp, is the average experimental value for the chemicals with predicted values.  The 

prediction coverage (fraction of chemicals predicted) must also be considered because the 

prediction accuracy (in terms of R
2
abs and RMSE) can often be improved at the sacrifice of the 

prediction coverage.  The R
2
abs and RMSE were calculated by pooling the results from all the 

prediction folds into one set of predictions. 

 The prediction results for the LC50 endpoint were as follows:  

Method R
2
abs RMSE MAE Coverage 

Hierarchical 0.56 0.86 0.58 0.97 

Group contribution 0.60 0.84 0.60 0.86 

Single Model 0.50 0.92 0.65 0.97 

Nearest neighbor 0.55 0.93 0.70 0.91 

FDA 0.52 0.96 0.68 0.95 

 

The hierarchical method achieved the best results if one accounts for both prediction accuracy 

(R
2
abs, RMSE, or MAE) and prediction coverage.  The group contribution method achieved a 2% 

smaller RMSE than the hierarchical method but the prediction coverage was 11% lower.  The 

single model method achieved a RMSE that was 7% larger at the same level of prediction 

coverage.  The simple nearest neighbor method achieved the lowest prediction statistics (the 

RMSE was 8% higher and the predictive coverage was 6% lower than the hierarchical method).  

Kaiser and Niculescu (Kaiser and Niculescu 1999) reported a larger RMSE of 0.98 (for a slightly 

larger LC50 dataset of 865 chemicals).  
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 The predicted values for the LC50 endpoint (for all 5 prediction folds) for the hierarchical 

method are as follows: 
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4.1.2 External Validation 

 The predictive ability of the QSAR methodologies for the fathead minnow LC50 endpoint 

were also validated using true external validation (using experimental data that was never part of 

any training set).  The external toxicity data was obtained by querying the ECOTOX database for 

rainbow trout LC50 values for chemicals not present in the overall fathead minnow LC50 training 

set of 818 chemicals.  LC50 data for the rainbow trout were shown to be highly correlated with  

fathead minnow LC50 data (Sulaiman 1993; Thurston et al. 1985).  There are 231 chemicals in 

the ECOTOX database (omitting salts and inorganic chemicals) which possess LC50 values for 

both the fathead minnow and the rainbow trout.  The experimental LC50 values were again highly 

correlated: 
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The root mean square difference between the LC50 values for the two species was 0.66 log units.  

For the 10 chemicals studied by Sulaiman (Sulaiman 1993), the root mean squared difference 

was 0.42 log units. 

 The prediction results for the different QSAR methodologies (hierarchical, single model, 

group contribution, FDA, and nearest neighbor) will be compared to those obtained using 

ECOSAR (Cash and Nabholz 2004).  ECOSAR is a computer program developed by the US 

EPA to predict aquatic toxicity to fish, aquatic invertebrates, and green algae.  ECOSAR predicts 

acute fish toxicity using QSAR models for many different chemical classes.  The models in 

ECOSAR are linear regressions between the toxicity and the octanol water partition coefficient.  

The fish toxicity values generated by ECOSAR are not species specific.  Sometimes the 

ECOSAR software produces multiple predictions for the 96 hour fish toxicity for a given 

chemical (if a chemical can be assigned to more than one chemical class or if predictions are 

made using two different octanol water partition coefficient values).  It was determined that 
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slightly better prediction results are achieved if the most conservative (i.e. smallest) toxicity 

value is used each time (i.e. instead of taking a geometric average).  In some cases, ECOSAR 

indicated that the octanol water partition coefficient was too high for an accurate prediction.  

These predictions were considered to be outside the prediction space of the respective QSAR 

model. 

 The prediction results for the external rainbow trout dataset (n = 361) are as follows: 

Method RMSE Coverage 

Hierarchical 1.20 0.86 

Single model 1.28 0.86 

Group contribution 1.30 0.62 

FDA 1.38 0.80 

Nearest neighbor 1.24 0.69 

ECOSAR 1.69 0.85 

 

As was the case in the statistical external validation, the hierarchical method achieved the best 

results in terms of both the RMSE and the prediction coverage.  The hierarchical method 

achieved an RMSE that was 40% lower than the value obtained using ECOSAR.  The 

predictions for the hierarchical method for the rainbow trout external set are as follows: 
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The R
2
abs value (0.14) and the RMSE (1.20 log units) for the hierarchical method for the rainbow 

trout external set were poorer than the values achieved for the 5 fold validation exercise (0.56 

and 0.86, respectively).  A portion of the increased RMSE can be attributed to the species 

difference between the fathead minnow and the rainbow trout (the root mean squared difference 

between the two species was previously shown to be ~0.42-0.66 log units).  While the results for 

the rainbow trout test set were not excellent, they do indicate that the software can achieve 

superior prediction results to the ECOSAR program.
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4.2 Tetrahymena pyriformis 50% growth inhibitory concentration (IGC50) 

 The predictive ability of the different QSAR methods for the IGC50 endpoint was 

evaluated using statistical external validation using the training and prediction sets developed by 

Zhu and coworkers (Zhu et al. 2008).  This dataset was previously modeled using several 

different literature QSAR methodologies (Zhu et al. 2008).  The prediction accuracy was 

evaluated in terms of R
2
abs and the MAE (mean absolute error).   

 The prediction results for the IGC50 endpoint were as follows (Martin et al. 2008):  

  Set 1 (n=339) Set 2 (n=110) 

Method R
2
abs MAE % Cov. R

2
abs MAE % Cov. 

Hierarchical 0.84 0.29 99 0.70 0.33 90 

FDA 0.81 0.33 99 0.60 0.41 89 

Nearest Neighbor 0.76 0.39 96 0.21 0.48 89 

Single model 0.81 0.32 99 0.67 0.37 90 

Group contribution 0.82 0.33 95 0.73 0.36 82 

kNN-Dragon (UNC) 0.85 0.27 80 0.72 0.33 53 

ASNN (VCCLAB) 0.87 0.28 87 0.75 0.32 72 

 

 The hierarchical clustering method achieved the best prediction statistics if one takes into 

account both the prediction accuracy and prediction coverage.  The best literature QSAR 

methods (kNN-Dragon and ASNN) achieved slightly lower MAEs and had significantly lower 

prediction coverages (ranging from 53-72% for the second set) compared to the hierarchical 

method (90%).  The results from the FDA clustering method were slightly worse than the results 

from the hierarchical clustering method (the average MAE for the two prediction sets was 17% 

higher).  The single model method achieved slightly worse prediction statistics (the average 

MAE was 12% higher) than the hierarchical clustering method.  The group contribution model 

(based on fragment counts) achieved results similar to the single model (based on molecular 

descriptors).  The nearest neighbor method performed worse than the other QSAR methods 
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evaluated in this study (the average MAE is 38% higher than the hierarchical clustering method).   

The prediction results for the first prediction set for the hierarchical method are given by: 
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The results for the second prediction set for the hierarchical method are given by: 

-3

-2

-1

0

1

2

3

4

-3 -2 -1 0 1 2 3 4

experimental -log(IGC50 mmol/L)

p
re
d
ic
te
d
 -
lo
g
(I
G
C
5
0
 m
m
o
l/
L
)

data

Y=X line

 



 28 

4.3 Oral rat LD50 dataset 

 The predictive ability of the QSAR methodologies for the LD50 endpoint were evaluated 

by statistical external validation by randomly dividing the overall data set into a single training 

set (80% or 5919 chemicals) and prediction set (20% or 1479 chemicals).  5 fold external 

validation was not performed due to the very large size of the LD50 data set.  The prediction 

accuracy will be evaluated in terms of R
2
abs and the MAE (mean absolute error).  It was not 

possible to develop a single model or a group contribution model that fit the entire training set. 

 The prediction results for the LD50 endpoint were as follows: 

Method R
2
abs MAE Coverage 

Hierarchical 0.44 0.48 79 

Nearest Neighbor 0.35 0.50 99 

FDA 0.37 0.51 99 

 

The R
2
abs values were lower than those for the fathead minnow LC50 endpoint.  However the 

MAE values were smaller.  This discrepancy can be explained by the fact that the LC50 dataset 

spans a wider range of toxicities and the fact that the LD50 endpoint consists of experimental 

values from many different laboratories from all over the world.  The results from the three 

different QSAR methods are comparable if one takes into account both the prediction accuracy 

and the prediction coverage.  The prediction results for the hierarchical method are given by: 
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5.  USING THE SOFTWARE 

5.1.  Importing a single compound 

A compound can be imported into the software several different ways: 

• Drawn using the provided molecular structure drawing tool 

• Imported from an MDL molfile 

• Imported from a SMILES string 

• Imported from the included structure data base 

5.1.1 Drawing a molecule using the structure drawing tool 

• First add any rings present in the molecule using the ring template buttons     

   (click on a button and then click somewhere in the document).   

• Next step add any chains using the  button.  

• Next add double or triple bonds by using  again and clicking on the bonds to make 

them double or triple bonds. You can use  and  to make existing bonds wedge 

bonds or you can draw wedge bonds directly.  

• Finally any hetero atoms (non carbon atoms) need to be set. Either use one of the element 
symbol buttons and click on an atom to change it to this symbol. You can also use the 

periodic table  to choose an element. Finally with  you can go through some 

common elements by clicking on an atom repeatedly. With  and  you can change 

the charge.  
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5.1.2.  Importing a molecule from an MDL molfile 

The structure for a test compound can be imported from an MDL molfile 

(http://www.mdl.com/solutions/white_papers/ctfile_formats.jsp) 

 

To import a structure using a MDL molfile, select Import from MDL molfile from the File 

menu. 

 

5.1.3.  Import a molecule from a SMILES string 

The structure for a test compound can be imported from a SMILES string 

(http://www.daylight.com/dayhtml/doc/theory/theory.smiles.html). 

 

To import a structure using a SMILES string, select Generate from SMILES string from the 

File menu. 

 

Enter the desired SMILES string in the dialog box provided and press OK.  A SMILES string 

can be pasted into the dialog box by pressing “Ctrl+V”. 

 

 
 

For example, to import benzene enter c1ccccc1 as the SMILES string. 
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5.1.4.  Import from the structure database 

 

To import a structure from the structure database, first select Import from structure database 

from the File menu. 

 

One can then import a structure from the CAS number, molecular weight, or formula: 

 

  
 

One can enter the CAS number with or without dashes (i.e. 71-43-2 or 71432).  The Currently 

drawn structure option allows you to retrieve the CAS number for a given drawn structure 

(assuming it is available in the database included with the software). 

 

You can also import a chemical by its CAS number by entering a CAS number in the Molecule 

ID field and pressing enter. 
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5.2.  Importing multiple compounds (batch import) 

 

Multiple compounds can be imported simultaneously several different ways: 

• Importing from a MDL SDfile 
• Importing from a list of CAS numbers 
• Importing from a list of SMILES strings 

 

Sample files in each of these formats are available in the “Sample” folder (located at C:\Program 

Files\T.E.S.T\Sample if the program is installed at C:\Program Files\T.E.S.T). 

 

5.2.1  Importing from a MDL SDfile 

 

To import multiple structures from an MDL SDfile select Batch import from MDL SDfile from 

the Import Chemical menu option. 

 

For best results one should use SDfiles with either a “CAS” or a “Name” field included to 

uniquely identify each chemical in the file.  The program first looks for a “CAS” field and then 

looks for “Name” field when assigning identifiers.  For example, a sample from an SDfile 

including formaldehyde would be as follows: 

 
Formaldehyde 

csChFnd80/07260508122D 

 

  2  1  0  0  0  0  0  0  0  0999 V2000 

    0.0000    0.0000    0.0000 C   0  0  0  0  0  0  0  0  0  0  0  0 

    1.4000    0.0000    0.0000 O   0  0  0  0  0  0  0  0  0  0  0  0 

  1  2  2  0  0  0  0 

M  END 

 

> <CAS> 

50-00-0 

 

> <Name> 

Formaldehyde 

 

$$$$ 

 

5.2.2  Importing from a list of CAS numbers 

 

To import multiple structures from a list of CAS numbers (in a text file), select Batch import 

from list of CAS numbers from the Import Chemical menu option. 

 

For example to import benzene and formaldehyde, the contents of the text file should be as 

follows: 

 
71-43-2 

50-00-0 
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5.2.3 Importing from a list of SMILES strings 

 

To import multiple structures from a list of SMILES strings (in a text file), select Batch import 

from list of SMILES strings from the Import Chemical menu option. 

 

The text file should contain the SMILES string and an unique identifier on each line.  The 

SMILES string and the identifier can be separated by a comma, tab, or a space.  The text file 

should not container a header line. 

 

For example to import benzene and formaldehyde, the contents of the text file should be as 

follows: 

 

c1ccccc1 71-43-2 

C=O 50-00-0 

 

3.2.4.  Editing a chemical in the batch list 

 

After importing the desired set of chemicals, you can edit individual chemicals in the list by 

double clicking on its row in the list.  An example of an imported batch list is as follows: 

 

 
 



 35 

5.2.4.  Deleting chemicals from the batch list 

 

To delete chemicals from the list, select one or more rows in the batch list and click the Delete 

button (or press the Delete key on the keyboard). 

 

5.2.5.  Closing the batch list 

 

To close the batch list click on the Close batch list button. One can also close the batch list by 

deleting all the chemicals in the list 

 

5.3.  Performing toxicity predictions 

 

• If the Molecule ID is blank, enter a unique identifier for the compound.  It is 
recommended that the CAS number be used for the Molecule ID but the name can be 

used as well.  The software needs the Molecule ID in order to generate the output web 

pages. 

• Select a toxicity endpoint using the drop down list provided (the fathead minnow LC50 is 
selected by default). 

• Select a QSAR toxicity estimation method using the drop down list provided (the 
hierarchical clustering method is chosen by default).  The methodologies are described in 

detail in the Theory section. 

• Sometimes predictions for a given chemical cannot be made because the model(s) violate 
the fragment constraint.  The fragment constraint says that in order for a prediction to be 

made using a given model, the chemicals used in the construction of the model must 

possess at least one example of each molecular fragment present in the test compound.  

One can relax this constraint by checking the Relax fragment constraint checkbox.  The 

fragment constraint is described in the Theory section. 

• Once the desired options have been selected, one can start the toxicity estimation 
calculations by clicking Calculate!.   

• Before the calculations can proceed, one must first select the location where the output 
files will be stored: 

 

 
 

• If one wishes to abort the currently running calculations, click on the red Stop button. 
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5.4.  Interpretation of results 

 

After performing the toxicity estimation calculations, a web page is generated which displays the 

results.  The results for benzene (for the Fathead minnow LC50 endpoint and the Hierarchical 

method) are as follows: 

 

Prediction results 

Fathead minnow LC50 
Parameter 

mg/L -Log(mol/L) 

Experimental value (CAS#=71-43-2) 

Source: ECOTOX 
28.30 3.44 

Predicted value
a
 33.96 3.36 

Prediction interval 17.34 ≤ Tox ≤ 66.51 3.07 ≤ Tox ≤ 3.65 
a
Note: the test chemical was present in the training set (i.e. the prediction  

does not represent an external prediction).  

Cluster model predictions and statistics 

Cluster model 
Test chemical  

descriptor values 

Prediction interval 

-Log(mol/L) 
r
2
 q

2
 #chemicals 

1397 Descriptors 3.470 ± 0.548 0.911 0.684 5 

1442 Descriptors 3.263 ± 0.777 0.739 0.569 7 

1547 Descriptors 3.298 ± 0.491 0.879 0.791 29 

1619 Descriptors 3.903 ± 1.198 0.686 0.600 170 

1628 Descriptors 2.615 ± 1.273 0.653 0.592 245 

1633 Descriptors 3.212 ± 1.162 0.700 0.676 617 

1634 Descriptors 3.344 ± 1.394 0.698 0.678 816 

Descriptor values for test chemical 

The predicted toxicity for benzene is 33.96 mg/L and the experimental value is 28.3 mg/L.  The 

prediction interval is between 17.34 and 66.51 mg/L (one is 90% confident that the predicted 

value is between 17.34 and 66.51 mg/L).  The prediction is flagged with an asterisk in this 

example because benzene was part of the original training set that was used to build the 

hierarchical models.  If one would like to generate an external predicted value for benzene, one 

can rerun the calculations using the either FDA or nearest neighbor methods (since these 

methods generate models at runtime that do not include the test chemical).  If an experimental 

value is available, this value should be used instead of the predicted value when making 

regulatory decisions.  
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For the hierarchical method, the web page also includes a summary of all the predictions from 

the models used to estimate the toxicity.  For benzene, seven hierarchical cluster models were 

used to generate the estimated toxicity value.  Most of the models generated toxicity values of 

about 3 (in terms of –Log(mol/L)). One can click on the link for each model (in the Cluster 

model column) to display its statistics, regression plot, parameters, and chemical descriptor 

values. 

 

For example for model #1547, the model statistics are as follows: 

 

Parameter Value 

Endpoint Fathead minnow LC50 

r
2
 0.879 

q
2
 0.791 

#chemicals 29 

Model 1547 

 

The r
2
 value is the correlation coefficient and the q

2
 value is the leave one out correlation 

coefficient.  The model regression plot is as follows: 
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The model parameters are as follows: 

 

Model coefficients 

Coefficient Definition Value Uncertainty* 

Intercept Model intercept 4.6476 1.9614 

xv2 Valence 2nd order chi index 0.2394 0.1417 

ka1 First Order Kappa Alpha Shape Index 0.1874 0.1151 

ssi Standardized Shannon Information -0.9667 0.3794 

BEHe2 
highest eigenvalue n. 2 of Burden matrix / weighted by 

atomic Sanderson electronegativities 
-0.8181 0.7153 

ICR radial centric information index 0.8540 0.3285 

* value for 90% confidence interval 

 

The above table indicates that the equation for the model is as follows: 

 

6476.48540.0

28181.09667.011874.022394.0)/50log(

+×

+×−×−×+×=−

ICR

BEHessikaxvLmolLC
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The descriptors for the model chemicals are as follows: 
 

Descriptor Values 

Number Chemical Structure 
Exp. Toxicity 

-Log(mol/L) 

Fit Toxicity 

-Log(mol/L) 
xv2 ka1 ssi BEHe2 ICR 

1 108-88-3 

 

3.4300 3.3356 1.6547 4.3815 0.7965 3.0513 0.8631 

2 100-41-4 

 

3.9470 3.9541 1.8392 5.3593 0.8333 3.2583 1.5613 

… … … … … … … … … … 

29 78-79-5 

 

2.9520 3.1641 1.0505 4.4805 1.0000 2.9788 0.9710 

 

 

 One can click on the links in the Test chemical descriptor values column to view the 

descriptor values for the test chemical for the given cluster model.  For cluster#1547, the model 

descriptors for the test chemical are as follows: 

 

Descriptor Values 

Descriptor Value 

xv2 1.1547 

ka1 3.4123 

ssi -0.0000 

BEHe2 2.7687 

ICR -0.0000 
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